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SUMMARY

In order to determine the aerodynamic forces acting upon a crewmember/
escape seat combination at transonic speeds, and the flail potential forces
acting on the crewmember's extremities, an existing half scale man/seat
combination was integrated with a model of the forward portion of the F-16.
The combination was tested in the Arnold Engineering Development Center
Propulsion Wind Tunnel (PWT) Facility Transonic Wind Tunnel (16T) during
the period September 9 to September 15, 1978, over the Mach number range
0.4 to 1.2 The basic data obtained in this way are reported in Reichenau
(Reichenau, 1978). The present report describes the experimental set-up in

detail and presents some typical force and force area (force/q?) plots.

From earlier work it was determined that the flow over the model was
"supercritical,’ implying a turbulent boundary laver at separation, and a
reasonably realistic simulation of full-scale conditions.

Very marked interference effects were observed on the man/seat combina-
tion, due to fuselage proximity. The most dramatic were large increases in
upper arm and upper leg flail potential forces In almost all cases, the
most severe interference occurred when a '"flow diverter" was mounted in front
of the cockpit.

Comparisons with other sources of data revealed generally good agree-
ment, except that the drag of the model was somewhat low; presumably due to
<he fact that the model was smoother than its full scale equivalent.
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MODEL DESCRIPTION

Crewm.n/Tjection Seat Configuration

A 1/2 scale crewman model representing a 50th percentile body size seated in
an ACES II seat was required for testing of dynamic pressures up to 600
pounds per square foot and velocities ranging up to Mach 1.5. The model

was designed to meet the structural requirements of the Arnold Engineering
Development Center (AEDC) PWT facility and its Quality Control Procedures and
was approved by AEDC engineering personnel prior to commencement of testing.

The crewman/seat model was designed and constructed (Figures 1 and 2) under

a previous contract.* Its dimensions were matched to the projected anthropo-~
metry of 1985 Air Force Rated Flying Personnel as supplied by the Department
of the Air Force. The model crewman was instrumented with strain gauges on
his "skeletal" structure to enabtle limb flail potential forces to be measured.
A three component strain gauged beam also enabled helmet 1ift, drag and side
forces to be measured.

The crewman design was such that a number of body configurations could be
investigated. These included the normal seated condition, one asymmetric arm
"flail” condition, one asymmetric 1lng condition, and one condition with an

arm and a leg in "flailing" positions. The asymmetric arm and lep were designed
to be bolted to the body structure in place of the instrumented limbs used for
the normal seated position. These asymmetric members were not instrumented.

Force Measuring Instrumentation

Limb forces were measured by instrumented beams. These beams varied in dimen~
sion but were all of similar construction. (See Figure 3 for the beams as
installed.)

As shown in Figure 4 each beam consists of end mounting bosses with the
connecting center portion machined to provide a more flexible section. Gauges
were mounted to the center section to measure the strain present, The loca-
tion of these strain gauges was determined and recorded, (see Figures 5 and 6)
during construction.

The 1limb force data presented by Reichenau (1978) were obtained using equations
that assumed a concentrated load on each segment, creating bending moments

Ml and M, at the strain gauge locations. Knowing values for the bending

moments & and M, and the distance between them, the value of the concentrated
load and %ts point of application (i.e. center of pressure) were then calculated,
This method was good for a first approximation of limb loading, however, it
should be noted that this also requires the assumption of a linear bending
moment distribution. Furthermore, there is no restriction that the force must
act on the limb. It can be shown that when M. and M2 are approximately the

same magnitude, the point of application of L%e concéntration load is not

located on the limb. It should also be pointed out that the upper limb data

*Contract Number F33615-76-C~0530




: (i.e. upper arm and upper leg) presented by Reichenau (1978) contained force
and moment contributions from the lower limb (i.e. lower arm and lower leg).

The limb force data presented in this report was obtained using equations that
assumed a linear load distribution acting on the load bearing limb. The
equations are:

3 3
£, = 20X, M%)
2, 2
- \
X‘ X1 (Xl XZ'
2 3
£ = MZ - f (XZ - X2 )
1 °\3 6
3
el
6X
Ft = (fo + fl) E (resultant force acting on the limb)
2
2 52

_ X X B (moment contribution applied by
Mj fo (——%—— T —) + fl(—']— —) the lower limb to the upper
limb at the joint)

/ -o.
‘. 1 ) f, ,Vj, int

X M;

Where X, and X, are the strain gauge locations and X is the distance over
which the distributed load acts., All of the distances were measured from a
reference point on each limb. M. and M, are the bending moments at the

strain gauge locations. The forces per unit length, f and F, are the

initial and final values of the distributed loading. The dis%ributed load
analysis, unlike the point load analysis, requires that the resultant force

(F, ) act on the member. The moment, M, is the moment contribution of the
lower limb distributed load, acting at’the joint (i.e. elbow and knee) and the
X. is the location of the joint measured from the reference point on the

1dwer 1limb.

For the force calculations in the upper limb, the force (F,) and moment

contributions (M.,) of the lower limb were subtracted out, tunlike the upper
limb force calcuiated in the previous point load analysis.
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All limbs had these instrumented beams made of aluminum alloy. The head

sting differed in that it measured bending moments at one location only and
also incorporated a gauged ring for measuring lift loads (see Figure 7). It
was assumed that the drag and side force could be considered essentially
applied at the center of the head. Also the head sting was manufactured from
heat treated steel bars to provide an additional safety margin against failure.

Static Pressure Measurement (Crewman/seat Model)

Static pressure taps were provided at five locations on the crewman model
(Figure 8). 1In addition, a static pressure tap was mounted in the center of
the seat back,

These static pressure taps were connected to a scanner type valve located in
the lower portion of the seat which in turn was connected to the tunnel instru-

mentation system.

Construction Details (Crewman/seat Model)

The crewman portion of the medel was sculptured from mahogany to conform as
closely as possible to the projected anthropometry of the 1985 Air Force Rated
Flying Personnel. The limbs were made in two halves and the center machined
out to fit around the instrumented beams. One half of each limb was attached
by bolting it to the opposite half. A layer of glass reinforced plastic
(polyester resin) was applied to the outer surface, dressed smooth and painted.

The head and torso sections were both made of glass reinforced polyester resin
laminates. They were laid into molds fabricated from carved wocuden master
models. As the laminate was being built up, metal inserts were installed
where attachment aad hard mounting surfaces were desired. Access to mounting
bolts was provided by small removable panels or cover sections,

The seat structure was designed to aerodynamically simulate an ACES II ejection
seat. It was fabricated of aluminum alloy except for the headres: which was

a glass reinforced polyester resin laminate over a wooden form., (See Figures

9 and 10).

The distance between the main side members of the seat structure was selected
to fit the wind tunnel balance sleeve. This balance was supported by the
tunnel] sting from the ceiling of the 16 ft. x 16 ft. trasonic wind tunnel

at AE.,C. These side members also had mounting provisions for attaching the
upper arm aid leg instrumented beams, thus providing direct load paths for
these members. The head sting was attached to a cross member between the two
side members. The crewman model torso shell was also mounted to these side
members. The remainder of the seat was for aerodyramic shaping and carried
no major loads.

Half-Scale F-16 Forebody Model

The .vewman/seat model described above was designed and manufactured by Payne,
Inc., under a previous contract to determine the loads on a crewman when
ejected from a high~speed aircraft. To determine the change in this loading
when the crewman is in the proximity of the aircraft, a half-scale model of
the nose and cockpit section of the U, S. Air Force F-16 fighter aircraft was
constructed. To minimize cost, it was necessary to mount this forebody model

=0




on an existing sting. It was necessary that the crewman/seat model be able to
be displayed relative to the forebody model in a manner that would simulate an
ejection from an operational aircraft,

Since the crewman/seat model and balance were designed to attach to a sting,

it was decided to leave this arrangement unaltered, and allow all loads to be
measured exactly as in previous tests. This then required a forebody model
that could be supported directly from the same sting and could move relative

to the crewman/seat model on a path parallel to that of the ejection seat

rails (an inclination angle of approximately 55°30 from a water line). By
mounting the forebody on the crewman/seat model sting the two could be inclineli
in pitch, and moved in yaw with the control mechanisms already available. The
Forebody/Crewman/seat model assembly is shown in Figure 11.

Forebody Basic Structure

The major load carrying structure of the forebody--a central keel--was con-
structed of metal elements (Fig.re 12), Two steel tracks were attached to the
center aluminum structure of the model. The tracks were inclined at an angle
of 55°30 from the water line. This center structure was integrated into a
wooden structure consisting of wooden frames and bulkheads (Figure 13). These
were planked with wooden splines, filled with polyester filler and sanded
smooth. A glass reinforced polyester resin laminate was applied over the
wood, sanded smooth (Figure 14), given a final coat of polyester gel coat and
then painted (Figure 15).

Forebody/sting Attaching Structure

The existing wind tunnel sting was constructed of hardened high strength
steel, 3teel members were designed.to clamp around this existing sting, and
provide support for a system of track rollers which would guide the track
fixed to the forebody structure (Figure 16). This then allowed the forebody
structure to move with respect to the crewman/seat model along a line parallel
to that of the seat track rollers.

To position the forebody with respect to the crewman/seat model a hydraulic
cylinder with a stroke of 24 inches was attached at its fixed end to the pitch
arms of the sting (Figure 17). The piston rod end was attached to the fore-
body structure just aft of the cockpit canopy area.

The relative position of the forebody and the crewman/seat model was measured
by a ten turn potentiometer driven by a rack and pinion mechanism. The rack
was fastened to the forebody and drove the ,pinion attached to the sting
mounted track roller support structure (Figure 18).

Instrumentation on Forebody Model

Five dynamic pressure transducers were mounted in the cockpit region of the
forebody model. Figure 19 shows the general location of the transducers. One
transducer vas also connected to a tap in the center of the crewman/seat model
seat back in place of the static pressure tap.

These were Model EPG-400-25 hermetic pressure transducers manufactured by
Entron Devices, Inc., and had a nominal resonant frequency of 25KHz,

“16o




Cockpit Accessories

A one-ha’f scale model of the heads up display and gun sight was built and
mounted 1:.: the appropriate area of the top pcrtion of the instrument panel
(Figure 20).

e g
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Along the right hand side of the cockpit a simulated side arm controller was
also installed.

T

Alternate Model Configurations

Since 1t was desired to evaluate the crewman air loads with the canopy reumoved,
with a windshield and with a flow diverter in place, a simulated windshield
was fabricated to the forward canopy lines. This model addition ccild be
attached over the front of the instrument panel to simulate a fixed windshi 1d
{Figure 21).

A flow diverter concept was also fabricated of metal and positioned to simulate
a device that might be used to protect the pilot from windblast should the
canopy be unexpectedly lost in flight. This is shown in Figure 22,

-11-
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EXPERIMENTAL MEASUREMENTS

The model was tested at AEDC in the Propulsion Wind Tunnel (16T)
(Figure 23) in accordance with the test matrices given in Table 4. The re-
sulting data was presented in Reichenau (Reichenau, 1978). A detailed
comparison of these data with those of the original crew member and seat
alone (Figure 24) (Ervin, 1978; Anthony, 1978) is currently being prepared
under Contract No. AF-F33615-79-C0927).
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DISCUSSION

Gross Forces and Monments

The first question which arises concerns the overall validity of w.i.a
which was obtained at rather low Reynolds numbers (Re). It was originally
intended to test at a dynamic pressure of q = 600 1b/ft? which would have
resulted in Re = 3 x 10° (per foot). Thus,oa two inch diameter leg element
would have had Re = 0.5 x 108, which is clearly supercritical. The highest
values of q_ actually employed varied from 145 1b/ft2 at M = 0.4 to 326 1b/ft?
at M = 1.2.° The Reynolds numbers actually employed 1 x 10% and 1.6 x 10%

(per foot) so that the test Re was between one half and one *hird of the target

values, giving 1.7 x 10°-2.7 x 10% for the same two inch diameter limb. This
is close to the range of transition from laminar to turbulent boundary layer
flows for smooth circular cvlinders. Thus there was a possibility ihat these
data could not be applied to the full scale prohlem.

We first looked at some data from a previous contract {(Ervin, 1978;
Anthony, 1978) in which the same crewmember/seat combination was tested alone,
over a dynamic pressure range of 40-150 1b/ft2; as shown in Figures 26 to 29,
the relationship between q and Re for those tests being gicen in Figure 25.
In each cise, the data foroq = 100 zid 150 1b/ft? was more or less in agree-
ment, where.s both values and trends for q = 40 1b/ft? were quite different.
It was concluded that this difference probgbly represented the difference
between subcritical and supercritical flow, and that the q_ = 100 ft/1b° data

were therefore useful. The lowest value in the present program (q_ = 145 1h/ft7)

was comfortably above this figure. and the Reynolds number difference was even
greater,

The next step in validating the data was to compare it with the results
of other experiments, both model and full scale, itemized in Table 1, and
plotted in Figures 30 to 35.

In Figure 30, we sec that the 1lift force on the man and seat alone
(Frvin, 1978) compares well with that measured on the full scale Aces Il seat
at a lower Mach number; whizh alone is sufficient to explain the differences,
The 1lift in proximity to fuselage—even at the 24 inch separation--is signifi-
cantly higher, indicating a strong interference effect. This is rcasonable,
being equivalent to a pitch angle increase of roughly 15°.

Figure 31 shows the model drag to be between 60% and 75% of the full scale
value. This might be explained by the difference between the smooth highly
polished man model and the clothed, deformable live human subjects used in the
full scale tests. (Carlier work [Pawvne, 1975] has shown flapping clothing to
give a 25% drag increasc.) Thus, the drag differences can be regarded as




explained. The further reduction due to fuselage proximity is readily under-
standable as an interference effect (about 10° incrcase in effective pitch
angle) of the same type as that which caused the life increase.

The side force due to yaw comparison in Figure 32 is also good, and
increases our confidence in the data. The small increase due to fuselage
proximity is again an anticipated interference effect because the se-t/man
is in the sidewash of the yawed fuselage, and thus has an effectively
increased yaw angle.

The markedly reduced pitching moments shown in Figure 33 are probably
due to a combination of factors. The reduced drag noted earlier almost cer-
tainly g‘.es a change in the drag center, and pitching moment is very sensi-
tive to small variations in the nominal CG point about which moments are
measured—as one might suspect from the wide variations shown for the other
test seats.

Both yawing and rolling moments (Figure 34 and 35) conform to the full
scale values quite well at low yaw angles, but fall off uncharacteristically
at 30° yaw. Presumably the same flow field change is responsible for both
effects, but its precise nature cannot be positively identified at this time.
Some form of flow separation is clearly occurring at a lower angle than in
the full scale tests, and presumably this is due to the lower Reynolds num-
ber. In low speed wing experience, it is typically found that, even though
the flow is supercritical at low angles, stall occurs at a lower 1lift
coefficient (C,) (and therefore angle of attack) for the lower Revnolds
numbers.* In Sther words, CL MAX falls off with diminishing Reynolds narbers.

The foregoing analysis would seem to indicate that the data obtained in
the present program are, in fact. supercritical and applicable to the full
scale problem.

Table 1. Ejection Seat Data in Figures 3(0-35.

Seat Back Angle
During Tests
When Angle of
Code Seat Type Mach No. Attack = 0°
Al Model Seat 0.4 Visconti, Nuber 0°
1951
A Model Seat 0.8 Visconti, Nuber 0°
1951
c Model Seat 0.6 Reichenau, 1969 0°
D F-101 Seat 0.2 Glaigher, 1972 6°
B F-101 Seat = 0,16 Payne et al, 13°
1975
E ACES-I1 Seat = 0.16 Payne et al, 13°
1975

*See, for example, Page 30 of Reference 11, and Chapter 4 of Reference 12.
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The Effect of Limb Flail on Gross Moments and Forces

The flailing arm and leg position are illustrated in Figure 36,
Table 2 shows their effects on the pitching and yaw moments at zero pitch
and yaw.

While the effects of pitching moment are not large -~ roughly a 10%
change ~ the effect of the relatively small limb displacements on yawing
moment is surprisingly large. For a yaw moment of inertia of 10 slugs
ft , and M = 0.4, the combination of flailed leg and arm gives a yawing
moment of 89.2 1b ft, and a yawing acceleration of 511°/sec?.* Thus, at the
end of a tenth of a second, a yaw excursion of 2.6° would have been achieved,
with an angular velocity of 51°/sec. This is quite a major perturbation
compared with the symmetrical conditions normally used in tests.

Table 2. Effect of flailing limbs on gross yawing and pitching moments
(full scale values) for M = 0.4.

Pitching Moment Yawing Moment

Volume (ftz) Volume (ft2)
Symmetrical conditions -0.608 +0.048
Flailing arm only -0.528 -0.168
Flailing leg only -0.512 +0.184
Flailing arm and leg ~-0.480 -0.376

The Effect of Separction Distance on Limb Flail Force

Figures 37 to 39 show typical outward acting forces on the limbs as a
function of separation distance. While most of the trends are as might be
expected, there is an enormous and surprising magnification of the upper
arm "out" force in close proximity to the cockpit. The separation distance
where this maximum occurs is very dependent on the cockpit configuration,
as Table 3 shows. Again, it should be pointed out that the forces presente-
here were calculated by assuming a linear load distribution acting on the
upper and lower portions of the arm. Furthermore, the force and moment
contributiuns applied by the lower arm to the upper arm were subtracted out.

*If 1 = moment of inertia in yaw, = yaw angle, and M is the applied moment,

Iiy =M so \’.J= M/, 1)= (M/I)tzlz.
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Table 3. Maximum upper arm "out'" force areas in comparison with free-
stieam values.

Basic Flow . .
Cockpit { Diverter Windshield

Maximun (full scale) out

force area (ft?) 3.04 3.14 2.6
Critical (full scale)

separation height (ins) 18.0 37.0 23.0

2
Free stream force area (ft) 1.41 1.41 1.41
—

The largest magnification occurs with the flow diverter, and is equal
to an 122% increase. At M = 0.6 this critical outward force corresponds*
to 1677 1b acting outwardly on the upper arm, instead of the free-stream
value of 753 1b. We thus see that a relatively trivial variation in
cockpit geometry can have a major effect on flail potential forces; and
certainly not an effect which was anticipated.

The other limb segments do not experience anything like this
variation, although there is a 20% increase in upper leg out force when no
flow divertering devices are fitted.

The in-plane forces of limb 1ift and drag are plotted in Figures 40-42.
There is some magnification of upper arm drag, particularly with the flow
diverter {35%) and of the wupper leg lift. The maximum value of the latter
is 1.12 ft? (full scale) again with the flow diverter, and at the same
separation as the maximum out-force on the upper arm occurs., This force
area corresponds (at M = 0.6, sea level) to a lift force of 598 1b, compared
with almost zero in the undisturbed free-stream.

Helmet Forces

Typical (zero yaw) helmet lift areas are plotted in Figure 43 in
comparison with full scale low speed (M <0.2) data (Payne et al, 1975, and
Cowgill, et al 1978). For M = 0.4 and 0.0 the data are in good agreement
with Payne, and about twice as large as the Cowgill data. Traasonically,
the force area is significantly larger so that whereas we had previously
estimated a helmet 1ift force of 600 1b at M = 1.0, sea level, this must
now be revised to as much as 900 1b.

*Force is equal to the product of the force area and the free-stream dynamic
pressure.

-15-




Typical helmet drag areas are given in Figure 44. Here the data (Payne,
1975 and Cowgill, 1978) are more or less in agreement; the half scale model
data is very much lower. Presumably this is because thie head, face mask
and helmet are much smoother than the full scale articles, and do not
contain gaps and joints.

Once again the transonic values are much higher, and we way expect
a sea level drag force in excess of 700 1b at M = 1.0.

Figures 45-56 show the effect of seat separation distance on helmet
lift and drag for the three different cockpit configurations. In nearly
all cases, there is an intermediate separation distance where the forces
are somewhat greater than at the furthest separation. The windshield re-
duces the peak forces somewhat; the flow diverter increases them slightly.

With either device there is still significant lift on the helmet when
the crewmember is fully inside the cockpit (zero separation). The relevant
force areas are plotted in Figure 57, and show a fairly simple trend to
increasing 1ift with Mach number for the basic cockpit configuration., Addi-
tion of the windshield results in increased lift at M = 0.4 but thereafter
a diminution. This behavior suggests that a shock starts to form over tne
windshield just :bove M = 0.4, deflecting the flow aft and slightly down
into the cockpit, the deflection increasing with increasing M. (This
hypothesis is supported by the drag area variation plotted in Figure 59)

The flow diverter causes a very strange ''bucket' in the helmet 1lift
area at M = 0.8, which however, is not reflected in the Figure 59 drag
data. Since this might be thought to be due to a simple 'bad data" point,
we have added the data for : 5° pitch to Figure 57 to show the phenomenon
is consistent. Presumably it is again due to shock wave formation ahove
the diverter, occuring at a higher Mach number because the flow diverter

is considerably smaller than the windshield.

The corresponding (zero pitch) helmet 1lift forces are shown in Figure
58. Even at M = 0.4, the lift is 40 1b; sufficiently great to be a considerable
embarrassment, especially'if buffeting is also occurring. The transonic
values of several hundred pounds would of course be intolerable if the
Lielmet strap were strong enough to react it. In practice, helmet loss
would occur at all the speeds tested.

The drag force areas are given in Figure 59 and the corresponding
forces in Figure 60. While the figures for the open cockpit are unremark-
able, there is a change from negative drag with the windshield at low speeds
to positive drag above M = 0.78; a change compatible with the progressively
deflected flow hypothesis mentioned above.

With the diverter, the drag is always negative; the reversed flow being

strong enough to give a negative drag of 40-80 lbs at transonic speeds. It
is unlikely that this could occur without severe buffeting.

-16~
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Figure 20.

Figure 21.

Figure 22.

Forebody coeckpit area showing heads up display and gun-
sight mode:s.

Forebody cockpit with windshield instalied.

Forebody cockpit with flow diverter installed.
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comparison with other ejection seat
models.




IN CUBIC FEET

ROLL'NG MOMENT VOLUME

AM=0.4 CH SEPARATION
Swu=06 24 INCH S
Owu=035 MAN/SEAT ALONE
+6 -
——— PITCH ANGLE=0*
n s = PITCH ANGLE=-I5
+8 A —— — — — PITCH ANGLE=-30°
+4
4+3
+2
+1 (‘
PITCH
4_/ ANGLE = —13°
0
-1

-30 -20 -10 o
YAW ANGLE IN DEGREES

Figure 35. Rolling moment volume versus vaw
angle comparison with other
¢jection scat models.

-56-




A

38

ol Y

5

£

I

3

)

J

e

[dsIp pure wav

BIL L, BULTIN,, Y3Ilw Joquow

ey
3

B

MIID 91

B

S

J1BH "9y ouandr




TN e e v

BASIC MODEL

20 T
ARM LEG | PITCH=0°
O UPPER SIDE O UPPER SIDE |
0 LOWER SIDE 0\ LOWER SIDE .
5 i |
s f |
| | |
=3 [ !
% | ~ 1 |
3 ? ! |
: 8 ' g @ &8
- 3 ' ! !
w ! ?
- i ! x 1
i i !
< | B
U K¢ . i . e
u i ll z
O ! | !
« | | j !
o ) i
TS ; } 5 ! ©
| | ? |
< ! ! !
o ; i (O
2.0 1 ‘ -
| [ .
. !
! Y
; ! i
; o | '
: i )
-3.0 — O - - t- R -—i e ytl - ~4
!
| |
0 i |
! l
i {
{ 1
~4.0 l l l j l ‘/I
0 100 20.0 300 40.0 500 ™

SEAT DISTANCE ABOVE DATUM IN INCHES

Figure 37. Outward acting flail forces on arms and legs for the open
cockpit as a function of separation distance. (M = 0.6,
q, = 207 1b/ft?, zero yaw)
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Figure 38 Outward acting flail forces on arms and legs for the open
cockpit with flow diverter, as a function of separation
distance. (M= 0.6, q - 207 1b/ft?, zero yaw)

-g9.




BASIC MODEL AND WINDSHIELD

2.0 !
ARM LEG | PITCH=0°

O UPPER SIDE QO UPPER SIDE

O Lower sipe O LOWER SIDE |

!

|

o
<?.,L
GO
|
|
B>

! 1R
o~ } ‘ A
’u.: ) |
. | 1 ©
3 o : !
Wi
@ ’ , ;
< <10 o C e oo . _
] } !
3 g '
g ' © 0
w t
J %
3 ; ©
2 -20 O - e w e
0]
“30p— - - - -
i
-4.0 l l l l 1 /1
0 10.0 200 300 400 50.0 ®
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CONCLUSIONS

The data obtained are supercritical. Gross moment and force data agree
(except for drag) with measurements made with other models and full

scale seats. Drag is thought to be low because the model is rigid.

(e.g. , no flapping clothing) and smoother than a full scale escape system.

Proximity to the fuselage reduces seat drag and increases its 1lift
significantly. The changes are equivalent to a 10°-15° change in seat
angle of attack. Pitching moment is also changed markedly, but yawing and
rolling moments are not much affected. There is a small increase in side
force.

A flailing leg or arm, or both, causes a major increase in yawing moment,
even though the change in limb position (from the symmetrical case) is
quite small. This effect is very destabilizing.

Upper arm flail potential forces are roughly doubled by the presence

of the fuselage. This effect is sensitive to changes in

cockpit configuration and is most severe with the flow diverter in place.
There is also a large magnification of upper leg flail force which is
chiefly experienced in the 1lift direction, corresponding to a (full scale)
lift area of 1.1 ft?, or a 1ift force of about 600 1b/leg at M = 0.6,

Helmet forces broadly agree with other measurements in the literature,
except that low speed drag is much lower; presumably due to the smoothness
of th- model head. There is some magnification of helmet forces by fusec-
lage proximity.

Helmet 1ift forces are still large when the crew member is in his normal
flight position in the cockpit, and for M = 0.4-9.6 are not much affected
by either the windshield or the flow diverter. Above this sneed both
windshield and flow djverter give some relief (particularly the latter
near M = 0.8). But both these deflectors also result in negative helmet
drag readings, indicating the strong likelihood of severe buffeting.

Helmet loss is likely for all conditions tested.
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